Approximations and Mittag-Leffler modules

Algebraic structures and their applications, Spineto June 19, 2014

Jan Šaroch (Charles University, Prague)

Preliminaries

- R an associative ring with unit
- Mod-R a class of all (right R-)modules

- R an associative ring with unit
- Mod-R a class of all (right R-)modules
- we work in ZFC

Aims

• prove that the class of all flat Mittag-Leffler modules is not precovering over right non-perfect ring

- prove that the class of all flat Mittag-Leffler modules is not precovering over right non-perfect ring
- provide other examples of non-precovering classes $\mathcal{C} \subseteq \mathsf{Mod-}R$

- prove that the class of all flat Mittag-Leffler modules is not precovering over right non-perfect ring
- provide other examples of non-precovering classes C ⊆ Mod-R closed under direct summands and transfinite extensions

- prove that the class of all flat Mittag-Leffler modules is not precovering over right non-perfect ring
- provide other examples of non-precovering classes C ⊆ Mod-R closed under direct summands and transfinite extensions
- characterize cotorsion pairs $(\mathcal{A}, \mathcal{B})$ with $\mathcal{B} = \varinjlim \mathcal{B}$

- prove that the class of all flat Mittag-Leffler modules is not precovering over right non-perfect ring
- provide other examples of non-precovering classes C ⊆ Mod-R closed under direct summands and transfinite extensions
- characterize cotorsion pairs $(\mathcal{A}, \mathcal{B})$ with $\mathcal{B} = \varinjlim \mathcal{B}$
- byproduct: \mathcal{A} is covering $\implies \mathcal{A} = \varinjlim \mathcal{A}$ (an instance of Enochs' problem)

Definition

A class of modules A is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in A$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in A$ factorizes through f:

The map f is an \mathcal{A} -precover of M.

Definition

A class of modules A is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in A$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in A$ factorizes through f:

The map f is an \mathcal{A} -precover of M.

If f is moreover right minimal (that is, f factorizes through itself only by an automorphism of A), then f is an A-cover of M.

Definition

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ factorizes through f:

The map f is an \mathcal{A} -precover of M.

If f is moreover right minimal (that is, f factorizes through itself only by an automorphism of A), then f is an A-cover of M.

If \mathcal{A} provides for covers for all modules, then \mathcal{A} is called a covering class.

Definition

Let $\mathcal{A} \subseteq \text{Mod-}R$. A module M is \mathcal{A} -filtered (or a transfinite extension of the modules in \mathcal{A}), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{A} .

Definition

Let $\mathcal{A} \subseteq \text{Mod-}R$. A module M is \mathcal{A} -filtered (or a transfinite extension of the modules in \mathcal{A}), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{A} .

Notation: $M \in Filt(\mathcal{A})$. A class \mathcal{A} is filtration closed if $Filt(\mathcal{A}) = \mathcal{A}$.

Definition

Let $\mathcal{A} \subseteq \text{Mod-}R$. A module M is \mathcal{A} -filtered (or a transfinite extension of the modules in \mathcal{A}), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{A} .

Notation: $M \in Filt(\mathcal{A})$. A class \mathcal{A} is filtration closed if $Filt(\mathcal{A}) = \mathcal{A}$.

Example (Eklof lemma)

The class $^{\perp}\mathcal{C} = \text{KerExt}_{R}^{1}(-,\mathcal{C})$ is filtration closed for each class of modules \mathcal{C} .

Definition

Let $\mathcal{A} \subseteq \text{Mod-}R$. A module M is \mathcal{A} -filtered (or a transfinite extension of the modules in \mathcal{A}), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of \mathcal{A} .

Notation: $M \in Filt(\mathcal{A})$. A class \mathcal{A} is filtration closed if $Filt(\mathcal{A}) = \mathcal{A}$.

Example (Eklof lemma)

The class $^{\perp}\mathcal{C} = \text{KerExt}_{R}^{1}(-,\mathcal{C})$ is filtration closed for each class of modules \mathcal{C} .

In particular, so are the classes \mathcal{P}_n and \mathcal{F}_n of all modules of projective and flat dimension $\leq n$, for each $n < \omega$.

Deconstructible classes

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} = \operatorname{Filt}(\mathcal{A}^{<\kappa})$ where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} = \operatorname{Filt}(\mathcal{A}^{<\kappa})$ where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} = \operatorname{Filt}(\mathcal{A}^{<\kappa})$ where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.

Šťovíček

Every deconstructible class is precovering.

Definition

A pair $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ of classes of modules is called a cotorsion pair if $\mathcal{A}^{\perp} = \mathcal{B}$ and $^{\perp}\mathcal{B} = \mathcal{A}$. If $\mathcal{C}^{\perp} = \mathcal{B}$ for a class $\mathcal{C} \subseteq Mod$ -R, we say that the cotorsion pair \mathfrak{C} is generated by the class \mathcal{C} .

Definition

A pair $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ of classes of modules is called a cotorsion pair if $\mathcal{A}^{\perp} = \mathcal{B}$ and $^{\perp}\mathcal{B} = \mathcal{A}$. If $\mathcal{C}^{\perp} = \mathcal{B}$ for a class $\mathcal{C} \subseteq Mod$ -R, we say that the cotorsion pair \mathfrak{C} is generated by the class \mathcal{C} .

Remark Filt(\mathcal{A}) = \mathcal{A} , and \mathcal{B} is closed under \prod .

Definition

A pair $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ of classes of modules is called a cotorsion pair if $\mathcal{A}^{\perp} = \mathcal{B}$ and $^{\perp}\mathcal{B} = \mathcal{A}$. If $\mathcal{C}^{\perp} = \mathcal{B}$ for a class $\mathcal{C} \subseteq Mod$ -R, we say that the cotorsion pair \mathfrak{C} is generated by the class \mathcal{C} .

Remark

 $\mathsf{Filt}(\mathcal{A}) = \mathcal{A}$, and \mathcal{B} is closed under \prod .

Examples

 $(\mathcal{P}_0, \mathsf{Mod}\text{-}R)$ and $(\mathcal{F}_0, \mathcal{EC})$ are cotorsion pairs.

Definition

A pair $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ of classes of modules is called a cotorsion pair if $\mathcal{A}^{\perp} = \mathcal{B}$ and $^{\perp}\mathcal{B} = \mathcal{A}$. If $\mathcal{C}^{\perp} = \mathcal{B}$ for a class $\mathcal{C} \subseteq Mod$ -R, we say that the cotorsion pair \mathfrak{C} is generated by the class \mathcal{C} .

Remark

 $\mathsf{Filt}(\mathcal{A}) = \mathcal{A}$, and \mathcal{B} is closed under \prod .

Examples

 $(\mathcal{P}_0, \mathsf{Mod}\text{-}R)$ and $(\mathcal{F}_0, \mathcal{EC})$ are cotorsion pairs.

Eklof, Trlifaj; Šťovíček

If \mathfrak{C} is generated by a *set*, then \mathcal{A} is deconstructible.

Examples

• Tilting cotorsion pairs ($\Rightarrow A \cap B = Add(T)$ for a tilting module T).

Examples

- Tilting cotorsion pairs ($\Rightarrow A \cap B = Add(T)$ for a tilting module T).
- More generally, cotorsion pairs generated by a class of FP₂-modules.

Examples

- Tilting cotorsion pairs ($\Rightarrow A \cap B = Add(T)$ for a tilting module T).
- More generally, cotorsion pairs generated by a class of FP₂-modules.

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$. Then all modules in \mathcal{A} are $\mathcal{A}^{<\aleph_1}$ -filtered. Consequently, \mathfrak{C} is generated by (a representative subset of) $\mathcal{A}^{<\aleph_1}$, and \mathcal{B} is a definable class.

Examples

- Tilting cotorsion pairs ($\Rightarrow A \cap B = Add(T)$ for a tilting module T).
- More generally, cotorsion pairs generated by a class of FP₂-modules.

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$. Then all modules in \mathcal{A} are $\mathcal{A}^{<\aleph_1}$ -filtered. Consequently, \mathfrak{C} is generated by (a representative subset of) $\mathcal{A}^{<\aleph_1}$, and \mathcal{B} is a definable class.

The proof uses set-theoretic tools to deconstruct large modules from \mathcal{A} .

Examples

- Tilting cotorsion pairs ($\Rightarrow A \cap B = Add(T)$ for a tilting module T).
- More generally, cotorsion pairs generated by a class of FP₂-modules.

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$. Then all modules in \mathcal{A} are $\mathcal{A}^{<\aleph_1}$ -filtered. Consequently, \mathfrak{C} is generated by (a representative subset of) $\mathcal{A}^{<\aleph_1}$, and \mathcal{B} is a definable class.

The proof uses set-theoretic tools to deconstruct large modules from \mathcal{A} . It also relies on the possibility to find in \mathcal{B} (in fact, in any class closed under products and direct limits) a pure-injective module C such that each module from \mathcal{B} is a pure submodule in a product of copies of C.

Examples

- Tilting cotorsion pairs ($\Rightarrow A \cap B = Add(T)$ for a tilting module T).
- More generally, cotorsion pairs generated by a class of FP₂-modules.

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$. Then all modules in \mathcal{A} are $\mathcal{A}^{<\aleph_1}$ -filtered. Consequently, \mathfrak{C} is generated by (a representative subset of) $\mathcal{A}^{<\aleph_1}$, and \mathcal{B} is a definable class.

The proof uses set-theoretic tools to deconstruct large modules from \mathcal{A} . It also relies on the possibility to find in \mathcal{B} (in fact, in any class closed under products and direct limits) a pure-injective module C such that each module from \mathcal{B} is a pure submodule in a product of copies of C. To start the deconstruction process, a rich family of countably presented $\{C\}$ -stationary submodules has to be constructed in the first syzygy of any large module from \mathcal{A} .

C-stationary modules

Given a class $C \subseteq Mod-R$, we say that a module M is C-stationary provided that, for each $C \in C$ and for any/each presentation of M as the direct limit of a direct system $(M_i, f_{ji} \mid i, j \in I, i \leq j)$ of finitely presented modules, we have:

 $(\forall i \in I)(\exists j_i \geq i)(\forall k > j_i) \operatorname{Im}(\operatorname{Hom}_R(f_{j_i i}, C)) = \operatorname{Im}(\operatorname{Hom}_R(f_{k i}, C)).$

Given a class $C \subseteq Mod-R$, we say that a module M is C-stationary provided that, for each $C \in C$ and for any/each presentation of M as the direct limit of a direct system $(M_i, f_{ji} \mid i, j \in I, i \leq j)$ of finitely presented modules, we have:

 $(\forall i \in I)(\exists j_i \geq i)(\forall k > j_i) \operatorname{Im}(\operatorname{Hom}_R(f_{j_i i}, C)) = \operatorname{Im}(\operatorname{Hom}_R(f_{k i}, C)).$

The concept of a *C*-stationary module is not a new one. Under the name *relative Mittag-Leffler*, these modules have been studied from the 70s (Raynaud, Gruson), through 90s (Rothmaler, Zimmermann) to the recent times (Angeleri Hügel, Herbera).

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$. TFCAE:

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \lim_{n \to \infty} \mathcal{B}$. TFCAE:

- $\mathcal{A} = {}^{\perp}C$, for a pure-injective module;
- A is closed under pure-epimorphic images (and pure submodules);
- $Iim \mathcal{A} = \mathcal{A};$

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$. TFCAE:

- $\mathcal{A} = {}^{\perp}C$, for a pure-injective module;
- A is closed under pure-epimorphic images (and pure submodules);
- $Iim \mathcal{A} = \mathcal{A};$
- A contains all countable direct limits of countably presented modules from A;

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \lim_{n \to \infty} \mathcal{B}$. TFCAE:

- $\mathcal{A} = {}^{\perp}C$, for a pure-injective module;
- A is closed under pure-epimorphic images (and pure submodules);
- $Iim \mathcal{A} = \mathcal{A};$
- A contains all countable direct limits of countably presented modules from A;
- every module (in B) has an A-cover;

Theorem

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \lim_{n \to \infty} \mathcal{B}$. TFCAE:

- $\mathcal{A} = {}^{\perp}C$, for a pure-injective module;
- 2 A is closed under pure-epimorphic images (and pure submodules);
- $Iim \mathcal{A} = \mathcal{A};$
- A contains all countable direct limits of countably presented modules from A;
- every module (in B) has an A-cover;
- $\mathcal{A} \cap \mathcal{B}$ is closed under countable direct limits;
- $\mathcal{A} \cap \mathcal{B}$ consists of pure-split modules;

Let $\mathfrak{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair with $\mathcal{B} = \lim \mathcal{B}$. TFCAE:

- $\mathcal{A} = {}^{\perp}C$, for a pure-injective module;
- 2 A is closed under pure-epimorphic images (and pure submodules);
- $Iim \mathcal{A} = \mathcal{A};$
- A contains all countable direct limits of countably presented modules from A;
- every module (in B) has an A-cover;
- $\mathcal{A} \cap \mathcal{B}$ is closed under countable direct limits;
- $\mathcal{A} \cap \mathcal{B}$ consists of pure-split modules;
- $(\varinjlim \mathcal{A})^{<\aleph_1}$ consists of \mathcal{B} -stationary modules;
- Every pure-epimorphic image of a module from A is B-stationary.

Generalizing Bass' Theorem P

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$, then there exists a module K such that $\mathcal{A} \cap \mathcal{B} = Add(K)$.

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$, then there exists a module K such that $\mathcal{A} \cap \mathcal{B} = Add(K)$.

Corollary

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$, then there exists a module K such that $\mathcal{A} \cap \mathcal{B} = Add(K)$.

Corollary

- **2** every module (in \mathcal{B}) has an \mathcal{A} -cover;

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$, then there exists a module K such that $\mathcal{A} \cap \mathcal{B} = Add(K)$.

Corollary

- every module (in B) has an A-cover;
- every module (in B) has an Add(K)-cover;

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$, then there exists a module K such that $\mathcal{A} \cap \mathcal{B} = Add(K)$.

Corollary

- every module (in B) has an A-cover;
- every module (in B) has an Add(K)-cover;
- every module in Add(K) has a semiregular endomorphism ring;

If $(\mathcal{A}, \mathcal{B})$ is a cotorsion pair with $\mathcal{B} = \varinjlim \mathcal{B}$, then there exists a module K such that $\mathcal{A} \cap \mathcal{B} = Add(K)$.

Corollary

- every module (in B) has an A-cover;
- every module (in B) has an Add(K)-cover;
- every module in Add(K) has a semiregular endomorphism ring;
- K is Σ-pure-split.

Flat Mittag-Leffler modules

Flat Mittag-Leffler modules

Definition

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

 $\mathcal{P}_0\subseteq \mathcal{FM}\subseteq \mathcal{F}_0.$

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

$$\begin{split} \mathcal{P}_0 \subseteq \mathcal{FM} \subseteq \mathcal{F}_0. \\ \mathcal{FM} \text{ is filtration closed and closed under pure submodules.} \end{split}$$

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

$$\begin{split} \mathcal{P}_0 \subseteq \mathcal{FM} \subseteq \mathcal{F}_0. \\ \mathcal{FM} \text{ is filtration closed and closed under pure submodules.} \\ \text{All countably generated modules in } \mathcal{FM} \text{ are projective.} \end{split}$$

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

$$\begin{split} \mathcal{P}_0 &\subseteq \mathcal{FM} \subseteq \mathcal{F}_0. \\ \mathcal{FM} \text{ is filtration closed and closed under pure submodules.} \\ \text{All countably generated modules in } \mathcal{FM} \text{ are projective.} \end{split}$$

Remark (comparison with *C*-stationarity)

A module *M* is Mittag-Leffler if, for each system of left *R*-modules $(N_i \mid i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

The class of all flat Mittag-Lefler modules is denoted by \mathcal{FM} .

 $\begin{array}{l} \mathcal{P}_0 \subseteq \mathcal{FM} \subseteq \mathcal{F}_0. \\ \mathcal{FM} \text{ is filtration closed and closed under pure submodules.} \\ \text{All countably generated modules in } \mathcal{FM} \text{ are projective.} \end{array}$

Remark (comparison with C-stationarity)

A module M is C-stationary, iff the canonical map $M \otimes_R (C^*)^I \to (M \otimes_R C^*)^I$ is monic for all $C \in C$ and all sets I.

When is \mathcal{FM} precovering?

When is \mathcal{FM} precovering?

Theorem

The class \mathcal{FM} is precovering if and only if R is right perfect.

When is \mathcal{FM} precovering?

Theorem

The class \mathcal{FM} is precovering if and only if R is right perfect.

• The result originally proved by Š. and Trlifaj for countable rings, assuming SCH.

The class \mathcal{FM} is precovering if and only if R is right perfect.

- The result originally proved by Š. and Trlifaj for countable rings, assuming SCH.
- Later, Bazzoni and Šťovíček found a proof in ZFC.

The class \mathcal{FM} is precovering if and only if R is right perfect.

- The result originally proved by Š. and Trlifaj for countable rings, assuming SCH.
- Later, Bazzoni and Šťovíček found a proof in ZFC.

There is no restriction on the cardinality of the ring now.

The class \mathcal{FM} is precovering if and only if R is right perfect.

- The result originally proved by Š. and Trlifaj for countable rings, assuming SCH.
- Later, Bazzoni and Šťovíček found a proof in ZFC.

There is no restriction on the cardinality of the ring now.

Theorem can be adapted to show that, over right hereditary rings, a tilting module T is Σ -pure-split iff the class of all T^{\perp} -stationary pure-epimorphic images of modules from $^{\perp}(T^{\perp})$ is precovering.

The class \mathcal{FM} is precovering if and only if R is right perfect.

- The result originally proved by Š. and Trlifaj for countable rings, assuming SCH.
- Later, Bazzoni and Šťovíček found a proof in ZFC.

There is no restriction on the cardinality of the ring now.

Theorem can be adapted to show that, over right hereditary rings, a tilting module T is Σ -pure-split iff the class of all T^{\perp} -stationary pure-epimorphic images of modules from $^{\perp}(T^{\perp})$ is precovering. This gives plenty of new examples of non-precovering classes closed under filtrations and pure submodules, e.g. over hereditary Artin algebras

of infinite representation type.

1. L. Angeleri Hügel, D. Herbera: "Mittag-Leffler conditions on modules", Indiana Univ. Math. J. 57 (2008), 2459–2518.

2. L. Angeleri Hügel, J. Šaroch, J. Trlifaj: "Approximations and Mittag-Leffler conditions", preprint.

3. A. Slávik, J. Trlifaj: "Approximations and locally free modules", Bull. London Math. Soc. 46 (2014), 76–90.

4. J. Šaroch, J. Šťovíček: "The countable Telescope Conjecture for module categories", Adv. Math. 219 (2008), 1002–1036.