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o prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

o provide other examples of non-precovering classes C C Mod-R
closed under direct summands and transfinite extensions

o characterize cotorsion pairs (A, B) with B = lim B

o byproduct: A is covering = A = lim A (an instance of Enochs’
problem)
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Definition

A class of modules A is precovering if for each module M there is

f € Homg(A, M) with A € A such that each f' € Homg(A’, M) with
A" € A factorizes through f:
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The map f is an A—precover of M.

/

If f is moreover right minimal (that is, f factorizes through itself only by
an automorphism of A), then f is an .A—cover of M.

If A provides for covers for all modules, then A is called a covering class.
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Definition
Let A C Mod-R. A module M is A-filtered (or a transfinite extension
of the modules in A), provided that there exists an increasing sequence
(My | @ < o) consisting of submodules of M such that My = 0,
M, =M,

o M, = Uﬁ<a Mg for each limit ordinal o < o, and

o for each a < o, M,11/M, is isomorphic to an element of A.

Notation: M € Filt(A). A class A is filtration closed if Filt(A) = A.

Example (Eklof lemma)

The class -C = KerExt, (—,C) is filtration closed for each class of
modules C.

In particular, so are the classes P, and F, of all modules of projective
and flat dimension < n, for each n < w.




Deconstructible classes



Deconstructible classes

A class of modules A is deconstructible, provided there is a cardinal s
such that A = Filt(A<") where A<" denotes the class of all
< k-presented modules from A.




Deconstructible classes

A class of modules A is deconstructible, provided there is a cardinal s
such that A = Filt(A<") where A<" denotes the class of all
< k-presented modules from A.

For each n < w, the classes P, and F,, are deconstructible. J




Deconstructible classes

A class of modules A is deconstructible, provided there is a cardinal s
such that A = Filt(A<") where A<" denotes the class of all
< k-presented modules from A.

For each n < w, the classes P, and F,, are deconstructible. J

Every deconstructible class is precovering. I
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Definition
A pair € = (A, B) of classes of modules is called a cotorsion pair if

ALt =Band *B = A. If C* = B for a class C C Mod-R, we say that the
cotorsion pair € is generated by the class C.

Remark
Filt(A) = A, and B is closed under [].

Examples
(Po, Mod-R) and (Fy, £EC) are cotorsion pairs.

Eklof, Trlifaj; Stovicek
If & is generated by a set, then A is deconstructible.
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o Tilting cotorsion pairs (= AN B = Add(T) for a tilting module T).
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Theorem

Let € = (A, B) be a cotorsion pair with B = lim B. Then all modules in

A are A<Ni-filtered. Consequently, € is generated by (a representative
subset of) A<Mt and B is a definable class.

The proof uses set-theoretic tools to deconstruct large modules from A.
It also relies on the possibility to find in B (in fact, in any class closed
under products and direct limits) a pure-injective module C such that
each module from B is a pure submodule in a product of copies of C.
To start the deconstruction process, a rich family of countably presented
{ C}-stationary submodules has to be constructed in the first syzygy of
any large module from A.
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Given a class C C Mod-R, we say that a module M is C-stationary
provided that, for each C € C and for any/each presentation of M as the
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Definition

Given a class C C Mod-R, we say that a module M is C-stationary
provided that, for each C € C and for any/each presentation of M as the
direct limit of a direct system (M;, fji | i,j € I,i < j) of finitely presented
modules, we have:

(Vi e N(Fji = i)(Vk > ji) Im(Homg(f;i, C)) = Im(Homg(f4, C)).

v

The concept of a C-stationary module is not a new one. Under the name
relative Mittag-Leffler, these modules have been studied from the 70s
(Raynaud, Gruson), through 90s (Rothmaler, Zimmermann) to the recent
times (Angeleri Hiigel, Herbera).
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Theorem
Let € = (A, B) be a cotorsion pair with B = lim B. TFCAE:
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A =1C, for a pure-injective module;

A is closed under pure-epimorphic images (and pure submodules);
lim A = A;

A contains all countable direct limits of countably presented
modules from A;

every module (in B) has an A-cover;

AN B is closed under countable direct limits;

AN B consists of pure-split modules;

(lim A)<® consists of B-stationary modules;

Every pure-epimorphic image of a module from A is B-stationary.
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Generalizing Bass’ Theore

Lemma

If (A, B) is a cotorsion pair with B = lim B, then there exists a module K
such that AN B = Add(K).

Corollary
Let (A, B) and K be as in the lemma above. TFCAE:
Q A=limA,;
Q every module (in B) has an A-cover;
Q every module (in B) has an Add(K)-cover;
Q every module in Add(K) has a semiregular endomorphism ring;
Q K is X-pure-split.
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Definition
A module M is Mittag-Leffler if, for each system of left R-modules
(N; | i €l), the canonical map M ®g [[;c; Ni — [I;c; M ®r N; is monic.

The class of all flat Mittag-Lefler modules is denoted by F M.

Po C FM C Fy.
F M is filtration closed and closed under pure submodules.
All countably generated modules in F M are projective.

Remark (comparison with C-stationarity)

A module M is C-stationary, iff the canonical map
M ®g (C*)! — (M ®g C*)! is monic for all C € C and all sets /.
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Theorem
The class F M s precovering if and only if R is right perfect.

o The result originally proved by S. and Trlifaj for countable rings,
assuming SCH.

o Later, Bazzoni and Stovitek found a proof in ZFC.

There is no restriction on the cardinality of the ring now.

Theorem can be adapted to show that, over right hereditary rings, a
tilting module T is E-pure-split iff the class of all T*-stationary
pure-epimorphic images of modules from -(T~) is precovering.

This gives plenty of new examples of non-precovering classes closed
under filtrations and pure submodules, e.g. over hereditary Artin algebras
of infinite representation type.
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