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Aims

prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

provide other examples of non-precovering classes C ⊆ Mod-R
closed under direct summands and transfinite extensions

characterize cotorsion pairs (A,B) with B = lim−→B
byproduct: A is covering =⇒ A = lim−→A (an instance of Enochs’
problem)



Aims

prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

provide other examples of non-precovering classes C ⊆ Mod-R
closed under direct summands and transfinite extensions

characterize cotorsion pairs (A,B) with B = lim−→B
byproduct: A is covering =⇒ A = lim−→A (an instance of Enochs’
problem)



Aims

prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

provide other examples of non-precovering classes C ⊆ Mod-R

closed under direct summands and transfinite extensions

characterize cotorsion pairs (A,B) with B = lim−→B
byproduct: A is covering =⇒ A = lim−→A (an instance of Enochs’
problem)



Aims

prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

provide other examples of non-precovering classes C ⊆ Mod-R
closed under direct summands and transfinite extensions

characterize cotorsion pairs (A,B) with B = lim−→B
byproduct: A is covering =⇒ A = lim−→A (an instance of Enochs’
problem)



Aims

prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

provide other examples of non-precovering classes C ⊆ Mod-R
closed under direct summands and transfinite extensions

characterize cotorsion pairs (A,B) with B = lim−→B

byproduct: A is covering =⇒ A = lim−→A (an instance of Enochs’
problem)



Aims

prove that the class of all flat Mittag-Leffler modules is not
precovering over right non-perfect ring

provide other examples of non-precovering classes C ⊆ Mod-R
closed under direct summands and transfinite extensions

characterize cotorsion pairs (A,B) with B = lim−→B
byproduct: A is covering =⇒ A = lim−→A (an instance of Enochs’
problem)



Module approximation tools

Definition

A class of modules A is precovering if for each module M there is
f ∈ HomR(A,M) with A ∈ A such that each f ′ ∈ HomR(A′,M) with
A′ ∈ A factorizes through f :

A
f // M

A′

OO�
�
� f ′

>>}}}}}}}

The map f is an A–precover of M.

If f is moreover right minimal (that is, f factorizes through itself only by
an automorphism of A), then f is an A–cover of M.

If A provides for covers for all modules, then A is called a covering class.
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Transfinite extensions

Definition

Let A ⊆ Mod-R. A module M is A-filtered (or a transfinite extension
of the modules in A), provided that there exists an increasing sequence
(Mα | α ≤ σ) consisting of submodules of M such that M0 = 0,
Mσ = M,

Mα =
⋃
β<α Mβ for each limit ordinal α ≤ σ, and

for each α < σ, Mα+1/Mα is isomorphic to an element of A.

Notation: M ∈ Filt(A). A class A is filtration closed if Filt(A) = A.

Example (Eklof lemma)

The class ⊥C = KerExt1R (−, C) is filtration closed for each class of
modules C.

In particular, so are the classes Pn and Fn of all modules of projective
and flat dimension ≤ n, for each n < ω.
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Deconstructible classes

Definition

A class of modules A is deconstructible, provided there is a cardinal κ
such that A = Filt(A<κ) where A<κ denotes the class of all
< κ-presented modules from A.

For each n < ω, the classes Pn and Fn are deconstructible.

Št’ov́ıček

Every deconstructible class is precovering.
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Cotorsion pairs

Definition

A pair C = (A,B) of classes of modules is called a cotorsion pair if
A⊥ = B and ⊥B = A. If C⊥ = B for a class C ⊆ Mod-R, we say that the
cotorsion pair C is generated by the class C.

Remark

Filt(A) = A, and B is closed under
∏

.

Examples

(P0,Mod-R) and (F0, EC) are cotorsion pairs.

Eklof, Trlifaj; Št’ov́ıček

If C is generated by a set, then A is deconstructible.
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Cotorsion pairs (A,B) with B = lim−→B

Examples

Tilting cotorsion pairs (⇒ A∩ B = Add(T ) for a tilting module T ).

More generally, cotorsion pairs generated by a class of FP2-modules.

Theorem

Let C = (A,B) be a cotorsion pair with B = lim−→B. Then all modules in

A are A<ℵ1-filtered. Consequently, C is generated by (a representative
subset of) A<ℵ1 , and B is a definable class.

The proof uses set-theoretic tools to deconstruct large modules from A.
It also relies on the possibility to find in B (in fact, in any class closed
under products and direct limits) a pure-injective module C such that
each module from B is a pure submodule in a product of copies of C .
To start the deconstruction process, a rich family of countably presented
{C}-stationary submodules has to be constructed in the first syzygy of
any large module from A.
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C-stationary modules

Definition

Given a class C ⊆ Mod-R, we say that a module M is C-stationary
provided that, for each C ∈ C and for any/each presentation of M as the
direct limit of a direct system (Mi , fji | i , j ∈ I , i ≤ j) of finitely presented
modules, we have:

(∀i ∈ I )(∃ji ≥ i)(∀k > ji ) Im(HomR(fji i ,C )) = Im(HomR(fki ,C )).

The concept of a C-stationary module is not a new one. Under the name
relative Mittag-Leffler, these modules have been studied from the 70s
(Raynaud, Gruson), through 90s (Rothmaler, Zimmermann) to the recent
times (Angeleri Hügel, Herbera).
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Main characterization

Theorem

Let C = (A,B) be a cotorsion pair with B = lim−→B. TFCAE:

1 A = ⊥C , for a pure-injective module;

2 A is closed under pure-epimorphic images (and pure submodules);

3 lim−→A = A;

4 A contains all countable direct limits of countably presented
modules from A;

5 every module (in B) has an A-cover;

6 A ∩ B is closed under countable direct limits;

7 A ∩ B consists of pure-split modules;

8 (lim−→A)<ℵ1 consists of B-stationary modules;

9 Every pure-epimorphic image of a module from A is B-stationary.
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Generalizing Bass’ Theorem P

Lemma

If (A,B) is a cotorsion pair with B = lim−→B, then there exists a module K
such that A ∩ B = Add(K ).

Corollary

Let (A,B) and K be as in the lemma above. TFCAE:

1 A = lim−→A;

2 every module (in B) has an A-cover;

3 every module (in B) has an Add(K )-cover;

4 every module in Add(K ) has a semiregular endomorphism ring;

5 K is Σ-pure-split.
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4 every module in Add(K ) has a semiregular endomorphism ring;

5 K is Σ-pure-split.
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Flat Mittag-Leffler modules

Definition

A module M is Mittag-Leffler if, for each system of left R-modules
(Ni | i ∈ I ), the canonical map M ⊗R

∏
i∈I Ni →

∏
i∈I M ⊗R Ni is monic.

The class of all flat Mittag-Lefler modules is denoted by FM.

P0 ⊆ FM ⊆ F0.
FM is filtration closed and closed under pure submodules.
All countably generated modules in FM are projective.

Remark (comparison with C-stationarity)

A module M is C-stationary, iff the canonical map
M ⊗R (C ∗)I → (M ⊗R C ∗)I is monic for all C ∈ C and all sets I .
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When is FM precovering?

Theorem

The class FM is precovering if and only if R is right perfect.

The result originally proved by Š. and Trlifaj for countable rings,
assuming SCH.

Later, Bazzoni and Št’ov́ıček found a proof in ZFC.

There is no restriction on the cardinality of the ring now.

Theorem can be adapted to show that, over right hereditary rings, a
tilting module T is Σ-pure-split iff the class of all T⊥-stationary
pure-epimorphic images of modules from ⊥(T⊥) is precovering.

This gives plenty of new examples of non-precovering classes closed
under filtrations and pure submodules, e.g. over hereditary Artin algebras
of infinite representation type.
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The result originally proved by Š. and Trlifaj for countable rings,
assuming SCH.
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